Digital Imaging - Image Formation - 4

Advanced Health Education Center®

What is Digital Imaging

Digital imaging or Digital Image Acquisition

- Is the creation of a representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object.
- A key advantage of a <u>digital image</u>, versus an <u>analog image</u> is the ability to digitally make copies and copies of copies indefinitely without any loss of image quality.
- Digital imaging can be classified by the type of <u>electromagnetic radiation</u> or other <u>waves</u> whose variable <u>attenuation</u>, as they <u>pass through</u> or <u>reflect off</u> objects, conveys the <u>information</u> that constitutes the <u>image</u>.
- In all classes of digital imaging, the information is converted by <u>image sensors</u> into digital <u>signals</u> that are <u>processed by a</u> <u>computer</u> and made output as a visible-light image.
- For example <u>X-rays</u> allow digital X-ray imaging (<u>digital radiography</u>, <u>fluoroscopy</u>, and <u>CT</u>), and <u>gamma rays</u> allow digital gamma ray imaging (digital <u>scintigraphy</u>, <u>SPECT</u>, and <u>PET</u>).
- Digital imaging lends itself well to <u>image analysis</u> by <u>software</u>, as well as to <u>image editing</u> (including image manipulation).

Advanced Health Education Center®

Binary Numbers

- A **binary number** is number expressed in the **base-2 numerical system** or **binary numeral system**
- A method of mathematical expression which uses only two symbols: "0" (zero) and "1" (<u>one</u>).
- The computer uses the Binary number system.
- Conversion of base 10 to base 2 is beyond the scope of this class

Advanced Health Education Center®

Analog to Digital Conversion

The conversion of analog signals to digital information is accomplished by the ADC

- Two main characteristics are:
 - Accuracy Poor accuracy can result in Aliasing Artifacts
 - Speed The time it takes to convert the signal
 - These two measurements are inversely proportional
- ADC samples the analog signals at various points to measure the transmitted beam strength.
- The more points sampled the better the representation of the signal.

Advanced Health Education Center®

Digital Image Characteristics

• Matrix

- Digital images are made of up of a two dimensional array of numbers called a Matrix
- Consists of rows and columns of pixels
- Technologist selects the Matrix size

Pixel

- Pixels are each square in the Matrix that contain an individual number
- Each different number represents the corresponding tissue density.

Voxel

- Describes the thickness or depth of the pixels
- Example would be the different slice thickness of the scan

Advanced Health Education Center®

Image Digitization

- Objective of digitization is to convert an analog image into numerical data for processing by a computer.
- 3 Steps
 - Scanning
 - Sampling
 - Quantization

Advanced Health Education Center®

Scanning

- Step one is division of the image into small regions
- Pixels are small picture elements.
- Pixels are formed into a grid called a Matrix

Digital Image

 Digital image is a twodimensional array of pixels.

Each pixel has an intensity value

(represented by a *digital number*) and a

location address

(referenced by its *row* and *column* numbers).

• Each Pixel represents a particular space in the grid

Advanced Health Education Center®

Examples of Pixels

Pixels and Matrix

Smaller Pixels = More Detail

Sampling

- Sampling measures the brightness of each pixel
- Small light is projected thru the pixels and detected by a photomultiplier tube.

a b

(a) Continuous image projected onto a sensor array.
(b) Result of image sampling and quantization.

• The output of the photomultiplier tube is an electrical (analog) signal

Advanced Health Education Center®

Quantization

- Quantization is the final step in which each pixel is assigned an interger (o, positive or negative number) based on the strength of the signal
- The result is a digital image with a array of numbers
- This array of numbers is sent to the computer for more processing
- Each number is assigned a shade of gray.

Advanced Health Education Center®

EDUCATION A STAFFING A CONSULTING

Quantization Table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	п	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Beam Geometry

• Beam Geometry refers to the size and shape of the x-ray beam from the x-ray tube and passing thru the patient to reach the detector

Advanced Health Education Center®

PACS – Picture Archiving Communication System

- PACS is a medical imaging technology used primarily in healthcare organizations to securely store and digitally transmit electronic images and clinically-relevant reports.
- The use of PACS eliminates the need to manually file and store, retrieve and send sensitive information, films and reports.
- Instead, medical documentation and images can be securely housed in offsite servers and safely accessed essentially from anywhere in the world using PACS software, workstations and mobile devices.

Advanced Health Education Center®

DICOM SYSTEM

- There is a program called Digital Imaging in Communications and Medicine (DICOM)
- It is changing the medical world as we know it. DICOM is not only a system for taking high quality images, but also is helpful in processing those images.
- It is a universal system that incorporates image processing, sharing, and analyzing for the convenience of patient, physician and institution.

Advanced Health Education Center®

Advanced Health Education Center®

